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The authors consider the vibrations of an oscillator with elasto-residual linear and 

slightly non-linear characteristics. The investigations using the operator methods, are 

based on the residual creep theory and and low-order exponentials are adopted as the relaxation 

residual8 [I]. 

1. The relstionehip between the stress cr and deformation e in the residual theory of 

creep, is given by ffabotnov (23, in the form 

9, (4 = Ii -l- x3,* (iWo 
(1.1) 

The creep parameters x and PI and the exact form of function cp are normally determined 

experimentally. Utilising the properties of the operators 3,* (@) [I], and using a parti- 

cular form of the rp (e) EO=G (1 - yq (e)f, we can express (1.1) in the form 

u = Et e Ii - VP (efl, E, = .l& fl - x3=* (fi,l, B=Br--x (1.21 

Here, E, is the modnlos of elasticity in the operator form, E. is the instantaneous 

modulus of elasticity and 9~ and pure the relaxation parameters. 

Snbstitnting by Volterra’e principle, the instantaneous moduIu8 of elasticity with its 

operator analogae in the equation describing free vibrations of an elastic osciIIator we 

have, fn the linear case, 

2.’ + Wz’ + o$ ii - x3,+ @)I 5 = 0 (1.3) 

where x is the displacement while h and c+ are constants. This equation of motion corres- 

ponds to the case when y = 0 in (1.2). 

Uee in Equation (1.3) of a simple exponential (a = 0) as the relaxation kernel, leads 

t0 8 qttf&tUtiMIy COrWCt r%SUlt [3]. In this case, the ch8taCteristic eqU8tiOR. correepond- 

ing to 8 thirdorder differential equation to which Equation (1.3) is reduced, assumes the 

form 
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k2 + (02 - 21/F) k - oo” (x + 8) = 0 (1.4) 

and since the relaxation parameters satisfy [4] the 

inequalities x > 0, x + S < 0, the roots of the governing equation include one real root 

k, and two complex roots. These roots satisfy the conditions 

- 213 h + fj < h< 0, - '/2 (2h - fi) < Re k, 3 < - 2/3 h (1.5) 

In view of this, the solution of Equation (1.3) 

I = A,e”’ + rlpekSt + A,e”’ (1.6) 

describes a decaying process. 

However, the use of simple exponentials as the residual kernels leads to quantitative 

results which are unsatisfactory. More reliable results can be obtained only by means of 

a more accurate process of relaxation utilising weakly-singular residuals [5, 3 and I]. 

It is more convenient to ase the residual kernel proposed by Rabotnov - a small-order 

expoential 9, (B; t), whose properties are discussed below. 

2. Laplace’s transform of the function 9, (p; t) is of the form [6] 

L [So (fi; t) 1 = (pr - fl)-1 (r = i + a) (2.1) 

where t dsnotes the operator of the Laplace transform. 

The index u usaally determined during the construction of experimental creep or 

relaxation curves can normally be quite accurately expressed by a proper fraction. Let 

r I a/c, where a and c are integers. Expression (2.1) can also be used in many cases, 

to find the relationship between the function 9, (b; t) and the tabulated incomplete 

gamma-function r (m ; z) together with the probability integral @ (z) 

x s 

smB1 e-'ds, 0 (I) = -?- 1 e-*‘ds 

0 
co 

Thus, the transformation 

L P_l,* 03 91 = v,-- I! 

_L+ _p2 - 
1/F V/p(P--Rp’) + p ! p2 

results in the relationship quoted in [I] 

Similarly, we have 

(2.3) 

(2.4) 

(2.6) 
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For the case when - 1 <.u < 0 approximations can be used, which hold for any p 

(which in general are complex) 

Co 

3, (P; t)- - 2 
pr-1 ept 

VI=@ pn+w (- nr) 
+ res _ 

P p 
r- (2.7) 

Here and in the following, the residues are computed at the poles distributed on the 

branch of the complex variable p where - n < arg p < JC (the branch point at p = 0 is 

excluded). The error is estimated from the formula 

g= IPI 1 IPIsin6 (O<@GW), 
(I/G B e), e=jnr--laargf3j 1 

3,*(p). 1 - - 5 ptr 
+ res P 

n=0 pn+l r (I- nr) P (P’ - PI 

1 rN (‘) 1 G 
r W + r) t_r’N_r 
ng, p, N+l 

(2.8) 

(2.9) 

(2.10) 

For a real p, Equations (2.7) and (2.9) coincide with those given in [7], and the 

estimate of error is obtained in the same way as in [6]. 

L 13 *(p) eat 1 - 1 
a 

- 

(P’-@P)(P--w 143 m=a k=o 

Here 

mC-k 
a r=- 
c ’ 

b, =: i pa-1k4n-‘6 (mc + al - k) 

(mc+aI#kk) 
(mc$al=k) 

By theorem 11 of [8] (p. 218). we have 

For an arbitrary complex X, or a real A > 0, the error is given by the formula 

[ rK (t) 1 < -$ [ r “‘;bTl+t I) t-rL-r-l + r,\y$+:) tmMR2 + 

+ r FL + M + r + 2) t_fL-M-t_2 

J p I IA1 I h I M+l 

(2.12) 

Here 

irlisin* (o<*dVafan), j=h P/zn: d 9). *=/a--jarghil, K=Mc+aL 

3. Let us return to Equation (1.4). Using the Lapface transformation we obtain, for 

A=0 
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L [x] = 
P (@I+ 2’ (0) (3.1) 

P2 + oo2 11 -x b’ - !W’l 

Substitution p = zc (t = a/c) allows us $0 rationalise the expression (3.1) and to reduce 

it to elementary fractions 

L [ST] ==x A, [p”‘- ph.]-l 
k 

(3.2) 

By &I), the solution 

creep, has the form 

of the equation of free vibrations of an oscillator with residual 

k (3.3) 

The singalarity of the function 3, (8; t) at the initial moment L = 0, does not result 
in a singularity in the solution of Equation (3.3). This can easily be checked by means of 

limit theorems of the operator calculus. Approximation (2.7) allows the solution (3.3) to be 

brought to a numerical result. Use of the formula (2.7), brings into the solution for (3.3) 

terms in the form A exp PkCt corresponding to those roots pk = &’ of the denominator of 

(3.1), for which 1 arg & ) <T/C. 

The complex root pk of the equation 

pz + (&z = xwo2 
P’ - P 

(3.4) 

can be expressed in the exponential form pk = Rke’(Pk, 0 < jqk 1< x. By (3.4), we have 

R,@pk + o$ = xo$ j R,’ eirrPk - p 1-s (Rkp e4”k- 8) 

Equating the imaginary parts on either side of the equstion, we find that at% > II, 

sin 2q1, has the sign opposite to that of sin rqk. This is possible if 1/8 n < IT, 1 <n. 

Consequently the real part of the complex root pk = pkc is negative. Since X + e< 0 

?C > 0, the real roots of Equation (3.4) can only be negative, and this ensures an 

asymptotic stability of the solution of (3.3). 

Assuming that creep has little effect on the frequency of oscillations, we shall take 

pko 4 ich which corresponds to the case x = 0. Substituting the value of pko into the 

right-hand side of Equation (3.4) we obtain the first approximation 

pkl =ioo f- 
i 

“rc ‘1. -- 
( ioo)’ - P ) 

Since 1 f3 / > x and p < 0, we have arg [(iti&’ - fi] < 1/z XF and x 1 (&Jr - 
@ 1 -* < f. From this it follows that If - x [(io,)’ - fi1-I [ < 1 and, thus, the frequency 

of free oscillations with an allowance for the residual properties of the material is 

0 = fm pk < % 

In the case of forced oscillations, we have 

x=Y+YI ~[rl=~[Y1+~PZ+ope(l-~)]-l~[fI~)l 

where y are the free oscillations in the form (3.3) ; Y are the forced oscillations, and 
f(t) is the exciting force. 

When the initial conditions are z (0) = 0, 2’ (0) # 0, using the convolution theorem 
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and taking into account (3.21, we obtain 

2= tl A$’ (0) .?I,,‘_1 (& ‘f + 2 Ak3f,o_j (Pk) f (1) (3.5) 
k k 

In the case f(t) = A sin ant, the forced oscillations Y contain the expressions of the 
form 

3&_1 (&) sin icolt - 
- --_1 ki r(A&, at ,” -F- 

,io,t 

2i [(iWl)“C-- Pkl - 
e-io,t Cj3kC-f(Ol (3.6, 

- 
2i [(io#@- p/J + PkZC + al2 exP ;3kct 

This approximation is derived in the same way as (2.11). Only the second and the third 

term do not decay with time, and because of this, equation (3.5) will, after large enough 

interval of time, assume the form 

(3.7) 

Since the roots pk of Equation (3.4) do not include pure imaginary roots, Pk #= im, 

which means that the harmonic oscillations in (3.7) are of finite amplitude. If it is assumed 

that under resonant conditions q1 does not differ significantly from wo, then the approxi- 

mate condition of resonance can be given by 

In view of the fact that the resonant freqnency can have only one value, one may 

expect that not more than two of the harmonic components of (3.5) correspond to the pair 

of conjugate roots pk which are, under resonant conditions, substantially larger than the 
rest. Then, in view of (3.6), with 

Wl 
l!C - -ulccos e+ v, sin g 

the maximum amplitude of those components will reach 

Here, L”k and ok are, respectively, the real and the imaginary part of tOOt pk res- 

pectively for which Equation (3.9) is satisfied. 

As was shown above, I/% 5~ / c < / arg pk. 1 < x / c. From (3.10) it follows, that as 

larg p& tends to %~/TT/c the maximum amplitude increases without limit. 

The limiting condition of resonance occurs only when 1 arg & ] = ‘/a n/e, which 

corresponds to total absence of creep (X = 0). 

The equation for free vibrations of an osoillator under the conditions corresponding 
to the non-linearity of Equation (l-2), is of the form 

5” + 00” [1 - x3,* (@I 11 - yq (41 x = 0 (3.11) 

Neglecting the terms of second order and assuming that in this particular case 
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7 (x) = %a, we can rewrite (3.11) in the form 

x”_to~z-- x0,23,* (PI a?=== yes (3.12) 

Let us now use the method of successive approximations. As the zero th approximation, 
we shall take the solution (3.3) of Equation (3.12) at y = 0. As stated above, the use of an 
exponential kernel leads to a qualitatively correct solntion in the form of a linear combina- 
tion of three exponents. Indeed, the zero th approximation xe can, with sufficient accuracy, 
be represented by exponential expressions. 

Substituting xo into the right-hand side of Equation (3.12), we find 

In particular, when z (0) = 0, z’ (0) # 0, we obtain for the first approximation 

x1 = 2 A,r’ (0) 3,,,_,(~,; t) + 2: 2 A,D~~o~231,c-~ (hc) “I ’ (3.13) 

k 1 k 

The above approximations can be used to obtain a numerical solution. Expressing x1. 
exponentially and substituting them into the right-hand side of Equation (3.12) we can 
obtain the second approximation, etc. 

4. As an illustration, let us consider the following examples. The relaxation curve 

for armature iron f9] at 2’ = 500% under initial stress cro = 10.78 x 10’ n/m’ can, with a 

7% accaracy be described by (1.2) with y = 0, 0, = -0.5, p = -0.0183 set”.’ and 

X = 0.0146 sec’“+s. 

The problem of oscillations of a load I = 49 x IO’newtons placed at mid-span of such 

beam of length I= 4m, with a moment of inertia f = 2.45 x 10B6 m4 and Eo= 1,764 x 

lOu h/ma, reduces to the solution of the equations (ignoring the mass of the beam) 

z” + 649.7x - 9.4733_,,,* (- 0.0183) x = 0 (4.1) 

According to (3.1) to (3.3), when x (9) = 0, Z’ (0) + 0 , we have 

Here 
x = x’ f”) i A,Q (pk; q 

k=rj 

(4.2) 

A*= 2,24*10-6, A, = (1.368--1.374i) 10-3, A, = (1.368 +i.374i)10-8 

A,== (-1.379 - 1.374i) IO+, A,= (d.379 + 1.374i) 10-a 

PO=; - 3.749*10wa, [& = -3.574 + 3.5701, fJa = - 3.574 -3.5701' 

Bs = 3.566 -I- 3.570 i, & = 3.566 - 3.5701' 

Using (2,2) and (2.7) we obtain 

x = 0.03923 t* (0) e-o-o.o2*5 r sin 25.46 t (4.3) 

The approximation used above produce an error in the amplitude not exceeding 0.5%. 

If exponential residuals are used to obtain the relaxation curve (which can be done by 
neglecting the initial sinplarity in the carve, the obtained parameters are X= 0.94 x 
10e6 set -I, p = -2.6 x low6 set-t and u J 0. The solution of Equation (4.1) will in this 
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case take the form 

z = 0.0392ex'(")-n~4:.'0-*~ sin *5.49t (4.4) 

Thus, the use of exponential residual leads to the lowering of the logarithmic decre- 

ment by the factor of approximately 6 x 10’. 

By completing the programme of successive approximations which was described above 

for equation (3.12), under the initiaI conditions z (0) = 0, I’ (0) # 0, we shall obtain the 

first approximation 

(4.5) 

5i = 0.03928s’ (0) e-e.“a15 ’ sin 25.W j- 5.67x10-4 t’z (0) yad.0865t (0.14 sin 25.46 t - 

- i cos 25.46t) 

The need for a small non linear correction with a given x* (Of imposes some real 

limitations upon the parameter y. 

The drop in the frequency of free oscillations, which is noted when creep is taken 

into account, becomes particularly pronounced when parameters p and x are sufficiently 

large. For rubber-like material with rheological parameters U = -y , p = -1.95 aec-% 

and x = 0.75 set -1/ 
3, we obtain for oa = 10 set -I, x (0) = 0, and 0 # (0) .I , the 

following equation of free oscillations 

x” + 100s - 753_,,$*(- 1.95) .z = 0 (4.6) 

After only 2 seconds, the amplitude of these oscillations can be expressed with 0.25% 

accuracy, in the form 

x = 0.14 z’ (0) e-O.*l t sin 9.52 t (4.7) 

Thus, the frequency diminishes by 4.8%. 
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