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The authors consider the vibrations of an oscillator with elasto~residual linear and

alightly non-linear characteristics. The investigations using the operator methods, are

based on the residual creep theory and and low-order exponentials are adopted as the relaxation
residuals {1].

1. The relationship between the stress o and deformation ¢ in the residual theory of
creep, is given by Rabotnov {2], in the form

9 (&) = [ + x9,* Byls (LD

¢
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The creep parameters % and 53, and the exact form of function ¢ are normally determined
experimentally. Utilising the properties of the operators 39,* (8) [1], and using a parti-
cular form of the @ (&) Eo==¢ [1 — yg (€)], we can express (1.1) in the form

o=Eel—vyg@), E=El—x32*@®) B=Hh—x (L2
Here, E, is the modulus of elasticity in the operator form, E, is the instantaneous
modulus of elasticity and % and Sare the relaxation parameters.

Substituting by Volterra’s principle, the instantaneons modulus of elasticity with its
operator analogue in the equation describing free vibrations of an elastic oscillator we
have, in the linear case,

&t 2y 4 o [t — %0, @)z =0 (1.3)

where x is the displacement while s and @, are constants. This equation of motion corres-
ponds to the case when y =0 in (1.2).

Use in Equation {1.3) of a simple exponential (& = 0) as the relaxation kernel, leads
to a qualitatively correct result [3]. In this case, the characteristic equation, correspond-
ing to a third order differential equation to which Equation (1.3) is reduced, assumes the
form
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KA (2h — B) K2 4 (@2 — 21B) k — og (x + P) = 0 (1.4)

when ©g% > 2hB < 1/3 (2h — B)2 and since the relaxation parameters satisfy (4] the
inequalities % > 0, % +- P < 0, the roots of the governing equation include one real root

k, and two complex roots. These roots satisfy the conditions
—2gh+ B <k <O, —Y,2h —B) < Reky 3 < — %3k (1.5)

In view of this, the solution of Equation (1.3)

2= At 4 A, 4+ 4, (1.6)
describes a decaying process.

However, the use of simple exponentials as the residual kemels leads to quantitative
results which are unsatisfactory. More reliable results can be obtained only by means of
a more accurate process of relaxation utilising weakly-singular residuals [5, 3 and 1].

It is more convenient to use the residual kernel proposed by Rabotnov — a small-order
expoential 9, (B; t), whose properties are discussed below.

2. Laplace’s transform of the function 9, (B; ¢) is of the form [6]
L3, B;0]l=@ —B) (r=1+a) (2D
where L denotes the operator of the Laplace transform.

The index & usually determined during the construction of experimental creep or
relaxation curves can normally be quite accurately expressed by a proper fraction. Let
r=a/c, where a and ¢ are integers. Expression (2.1) can also be used in many cases,
to find the relationship between the function 9, (B; t) and the tabulated incomplete
gamma-function I" (m; x) together with the probability integral @ (x)

aj
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Thus, the transformation
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results in the relationship quoted in [1]
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Similarly, we have
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For the case when — 1 <& < 0 approximations can be used, which hold for any 3
{which in general are complex)

® —nr—1 t
T &P

3 0', 1) ~ —
“(P ) ngo Bn+1[‘(—~ nr) + res PT—B (2.7)

Here and in the following, the residues are computed at the poles distributed on the
branch of the complex variable p where — 71 < arg p < 7 (the branch point at p =0 is
excluded). The error is estimated from the formula

TN +r+1) v (2.8)
[Py ft)I<<- ag |8V !

ind (0oL
g={;§§sm El/§<e),/m 0=|nr—argB||
e pt
It (B)e b~ — oo ~}- TS __¢€ (2.9)
go BT (1 —nr) P(p —B)
F(rN47r) N
TN ]}(lm_Nﬂ_’ - (2.10)

For a real 3, Equations (2.7) and (2.9) coincide with those given in [7], and the
estimate of error is obtained in the same way as in [6].

1 © oo ?-l-—}—m o *
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By theorem 11 of [8] {p. 218), we have
bt
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81* (5 it ~ k t ren X
i AT Ry e

For an arbitrary complex A, or a real A > 0, the error is given by the formula

! [LOLAr41) gy  DIME2) 4,
frg ()< ngl[ IBILH + |A|M+1 i + (2.12)
+P(’L+M+"+2) ~rL-M~r-2
]BlLdrlllew‘l
Here
[hisiny  (O<<Yp <),
}‘={§M (Var < ), Y=|n—|argrll, K=Mc¢+aL

3. Let us retumn to Equation (1.4). Using the Laplace transformation we obtain, for
h=0
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. pz(0)+2(0) (3.1
TPt etll—x(p"—B)1]

Substitution p = z¢ (r = a/¢) allows us to rationalise the expression (3.1) and to reduce

L{x]

it to elementary fractions
Lz} =2 A [ — B0 (3.9
& .

By (2.1), the solution of the egnation of free vibrations of an oscillator with residual
creep, has the form
z=25 A g6y B 8
ZI: kY 1fe-1 V% (3.3)
The singularity of the function 3, (f;t) at the initial moment ¢t = 0, does not result
in a singularity in the solution of Equation (3.3). This can easily be checked by means of
limit theorems of the operator calculus. Approximation (2.7) allows the solution (3.3) to be
brought to a numerical result. Use of the formula (2.7), brings into the solution for (3.3)
terms in the form A4 exp ,Bk"'t corresponding to those roots p; = f3,° of the denominator of
(3.1), for which | arg 'Bk| <7/ e.

The complex root p; of the equation

Hng®
pr—B8
can be expressed in the exponential form p, = Rke‘i"k, 0 <L), | <. By(3.4), we have

(3.4

PP+ o=

R 2%+ 02 = no2 | R, ™ — B [ (R, e V%k— B)
Equating the imaginary parts on either side of the equation, we find that atx > 0,
sin 29, has the sign opposite to that of sin r@,. This is possible if Y/, n <], | < .
Consequently the real part of the complex root pj, = 5,° is negative. Since x + f <0
% > 0, the real roots of Equation (3.4) can only be negative, and this ensures an
asymptotic stability of the solution of (3.3).

Assuming that creep has little effect on the frequency of oscillations, we shall take

Pjq = éwe which corresponds to the case x = 0. Substituting the value of Pjg into the
right-hand side of Equation {3.4) we obtain the first approximation

. % \'h
Py = i (i ""(imo)r __B>
Since [B|>x% and 83<0, we have arg [(iwy)" — B] < Yy nr and x| (iwg)" —
P11 < 1. From this it follows that |1 — x [(iwg)" — B]™2 | <1 and, thus, the frequency

of free oscillations with an allowance for the residual properties of the material is
o = Im p, < @

In the case of forced oscillations, we have

DIRIIC

where y are the free oscillations in the form (3.3); ¥ are the forced oscillations, and
f{2) is the exciting force.

i %
e=y+Y,  Lil=Lln+|[r+or(1—5=

When the initial conditions are z (0) = 0, 2’ (0) &= 0, using the convolution theorem
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and taking into account {3.2), we obiain
== D) Az (0) Doy By )+ 20 AgPrey (B F (1) (3.5)
k k

In the case f () = 4 sin w,z, the forced oscillations Y contain the expressions of the
form

< b ——K—‘*l it
9 Bsinat~ Sk 4 e ¢
1e—=1 \Pk k;g I (— #&fe) 2 [(iml)l[c._..f?,k]
et Cﬁkcﬂml (3.6,

- + exp B,°t
2i [(i(l)])l"c——- Bxl Bk2c ~oay? p I?’A’.
This approximation is derived in the same way as {2.11). Only the second and the third
term do not decay with time, and because of this, equation (3.5) will, after large enough
interval of time, assume the form

3.7
1 Hp® ~1 17 Rt -1
= z’ [w{)? — m12 — (iml)r :!8_:} elwtt — .2.;_ {-moz — (1)12 — (m] e-—zm,t

Since the roots p, of Equation (3.4) do not include pure imaginary roots, Py == iw;
which means that the harmonic oscillations in (3.7) are of finite amplitude. If it is assumed
that under resonant conditions n, does not differ significantly from w,, then the approxi~
mate condition of resonance can be given by

@0 = 0@ [ — x| (iwg) — B2 (0" cos Yy nr — B)] {3.8)

In view of the fact that the resonant frequency can have only one value, one may
expect that not more than two of the harmonic components of (3.5) correspond to the pair

of conjugate roots /Bk which are, under resonant conditions, substantially larger than the
rest. Then, in view of (3.6), with

5t N
o,V = u, cos 5+ vy sin 5 {3.9)

the maximum amplitude of those components will reach
L 1
wy, sin = = 2, €08 T (3.10)

Here, u; and v}, are, respectively, the real and the imaginary part of root ,Bk res-
pectively for which Equation (3.9) is satisfied.

As was shown above, ¥/, 5 / ¢ <{| arg B, | <7/ ¢. From (3.10) it follows, that as
[arg Bkl tends to %77/ c the maximum amplitude increases without limit.

The limiting condition of resonance occurs only when | arg f, | = Y, n/e, which
corresponds to total absence of creep (% = 0).

The equation for free vibrations of an oscillator under the conditions corresponding
to the non-linearity of Equation (1.2}, is of the form

2 F ot — % AP —ye(@lz=0 (3.11)

Neglecting the terms of second order and assuming that in this particular case



Vibrations of an oscillator with residual creep 701

g (x) = »?, we can rewrite (3.11) in the form
2 + oz — x0?d,* (B) z = yo,’2 (3.12)

Let us now use the method of successive approximations. As the zero th approximation,
we shall take the solution (3.3) of Equation (3.12) at ¥ = 0. As stated above, the use of an
exponential kemnel leads to a qualitatively correct solution in the form of a linear combina-
tion of three exponents. Indeed, the zero th approximation x, can, with sufficient accuracy,
be represented by exponential expressions.

Substituting %, into the right-hand side of Equation (3.12), we find
Bpyod |
p— M) [p* + ©¢* — nae? (p" — B)7']

Lm=mm+§(

In particular, when z (0) = 0, z" (0) == 0, we obtain for the first approximation

2= D) A (0) 9y g B D)+ 20 2 AxB0c0; 0y By ! (3.13)
k [

The above approximations can be used to obtain a numerical solution. Expressing x,
exponentially and substituting them into the right-hand side of Equation (3.12) we can
obtain the second approximation, etc.

4. As an illustration, let us consider the following examples. The relaxation curve
for armature iron [9] at T = 500°C under initial stress g, = 10.78 X 10" n/m? can, with a
7% accuracy be described by (1.2) with y =0, a = ~0.5, 3 = ~0.0183 sec~%-5 and
% = 0,0146 sec™%5,

The problem of oscillations of a load W = 49 x 10*newtons placed at mid-span of such
beam of length ! = 4m, with a moment of inertia [ = 2.45 x 10~5m* and E,=1,764 x
10" h/m?, reduces to the solution of the equations (ignoring the mass of the beam)

z" + 649.72 — 9.4739_, ¥ (— 0.0183) z = 0 (4.1)
According to (3.1) to (3.3), when z (0) =0, 2" (0) 5= 0 , we have

_ 4 (4.2
z=2"(0) D) 4,9, By 1)
Here k=0
A= 2.24-10°%, A, = (1.368—1.374i) 10~%, A, = (1.368 --1.374i) 10~
Ag = (—1.379 — 4.374i) 10°%, A, = (—1.379 + 1.374i) 103
Bo = — 3.749.1073, |B, = —3.574 + 3.570i, P, = — 3.574 —3.570i
By = 3.566 + 3.570 i, P, = 3.566 — 3.570i
Using (2,2) and (2.7) we obtain
z = 0.03928 2" (0) 09285 ¢ gin 25.46 ¢ (4.3)

The approximation used above produce an error in the amplitude not exceeding 0.5%.

If exponential residuals are used to obtain the relaxation curve (which can be done by
neglecting the initial singularity in the curve, the obtained parameters are %= 0,94 X
10~% sec =}, B = ~2.6 x 10~ % sec™! and & = 0. The solation of Equation {4.1) will in this
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case take the form
z = 0.0392¢" (N=0.47-10-%t o3y 95 49, (4.4)

Thus, the use of exponential residual leads to the lowering of the logarithmic decre~
ment by the factor of approximately 6 x 104,

By completing the programme of successive approximations which was described above
for equation (3.12), under the initial conditions z (0) == 0, z" (0) 5= 0, we shall obtain the
first approximation

{4.5)

z, = 0.03928z (0) ¢ 2% ! gin 25.461 + 5.67x10"4 28 (0) ye~*%855¢ (0.14 sin 25.46 £ —
— £ cos 25.461)

The need for a small non linear correction with a given x* (0) imposes some real
limitations npon the parameter y.

The drop in the frequency of free oscillations, which is noted when creep is taken
into account, becomes particularly pronounced when parameters 5 and % are sufflcwntly
large. For rubber-like material with rheological parameters a. = =%, 5= —1.95 sec™ %
and % =0.75 sec"%, we obtain for @ = 10 sec™?, x(0) =0, and 0 (0) z , the
following equation of free oscillations

z" -+ 100z — 759 _*(— 1.95) z = 0 {4.6)

After only 2 seconds, the amplitude of these oscillations can be expressed with 0.25%
accuracy, in the form

z =044z (0) %" sin9.52¢ (4.7

Thus, the frequency diminishes by 4.8%.
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